- Home
- Nathalia Holt
Rise of the Rocket Girls
Rise of the Rocket Girls Read online
Begin Reading
Table of Contents
Photos
Newsletters
Copyright Page
In accordance with the U.S. Copyright Act of 1976, the scanning, uploading, and electronic sharing of any part of this book without the permission of the publisher constitute unlawful piracy and theft of the author’s intellectual property. If you would like to use material from the book (other than for review purposes), prior written permission must be obtained by contacting the publisher at [email protected]. Thank you for your support of the author’s rights.
For Larkin and our little rocket girls, Eleanor and Philippa
I did not come to NASA to make history.
—Sally Ride
Why do we, the solar sails,
fragile as a feather’s frond,
silently seek to sail so far?
We walk the air from here to planet out beyond
Because we’re more than fond of life and what we are.
—Ray Bradbury and Jonathan V. Post
To Sail Beyond the Sun
Preface
“Lily?” I suggested, pointing to a name I’d scribbled on a damp cocktail napkin. My husband shook his head no. I pressed the pen to my lips and concentrated, trying to balance my pregnant belly while perched on the wobbly edge of a bar stool. It was the summer of 2010, and my husband and I were trying to come up with names for our daughter’s December arrival. Sitting in a bar in Cambridge, Massachusetts, we brainstormed names, each writing them down privately on a napkin before showing the other, as if we were on some bizarre game show: Name Your Baby! We weren’t having much luck. We both have unusual first names—Nathalia and Larkin—so we wanted to find one that wouldn’t subject our daughter to a lifetime of odd nicknames. When Larkin wrote down Eleanor, I immediately rejected it. It sounded so old-fashioned. I couldn’t imagine naming my daughter that. But as the months went by and my belly grew, the name grew on me too. We started coming up with middle names. I suggested Frances, a fitting tribute to Larkin’s mother, who had passed away seven years earlier.
Like any modern mother-to-be, I researched the names we were dreaming up on the Internet. When I plugged in Eleanor Frances, I was surprised to find, buried in history, an Eleanor Francis Helin, born November 12, 1932. She was a scientist at NASA’s Jet Propulsion Laboratory, in charge of the program that tracked asteroids nearing Earth. Like the scientists we so often see personified in movies such as Armageddon, she hunted the asteroids that get a little too close to home. During her time at NASA, she discovered an impressive number of asteroids and comets—more than eight hundred. This was the kind of woman I wanted my daughter to share her name with. My search came up with an old black-and-white photo of her, blond bouffant hair curling at her shoulders, a timid smile as she held up an astronomy award for her asteroid discoveries. Exactly how long had this woman worked at NASA? I wondered. Did women even work at NASA as scientists during the 1950s? Unfortunately it looked like I might never find out. Helin had passed away a year before, in 2009. When my daughter was born, in the last hours of December 14, 2010, we named her Eleanor Frances, in part for a woman I had never met but whose story I couldn’t stop thinking about.
My continued obsession with Eleanor Francis Helin (“Glo” to her friends) led me to uncover the stories of a group of women intriguingly known as “the human computers” at the Jet Propulsion Lab in Pasadena, California. These women, recruited in the 1940s and 1950s, were responsible for all the critical calculations at JPL that powered early missiles, rocketed heavy bombers over the Pacific, launched America’s first satellite, guided lunar missions and planetary explorations, and even navigate Mars rovers today. My search unearthed a 1950s picture of the group, the women working at their desks. The image was crisp, yet the archivists at NASA knew only a few of the women’s names and weren’t sure what had become of them. It seemed their stories had been lost in the shuffle of history.
While we tend to think of the role women played during the early years at NASA as secretarial, these women were the antithesis of that assumption. These young female engineers shaped much of our history and the technology we have today. They became the earliest computer programmers at NASA. One of them still works there, the longest-serving woman of the American space program. Their stories give us an inside look at pivotal moments in American history, from a perspective never before told.
Since the cold night my Eleanor Frances was born, I’ve thought of these women often—particularly when the mood is intense. In my years as a microbiologist, I’ve tinkered with broken breast pumps in remote research stations in South Africa, watched my toddler run down darkened laboratory halls, and held in my hands raw data that shimmered with beauty. At each moment, I’m brought back to the women who dealt with similar struggles and triumphs a half century ago. How did they handle the sometimes awkward, sometimes wonderful challenges of being a woman, a mother, and a scientist all at once? There was only one way to find out: I’d have to ask them.
JANUARY 1958
Launch Day
The young woman’s heart was pounding. Her palms were sweaty as she gripped the pencil. She quickly scribbled down the numbers coming across the Teletype. She had been awake for more than sixteen hours but felt no fatigue. Instead, the experience seemed to be heightening her senses. Behind her she could sense Richard Feynman, the famous physicist, peeking at her graph paper. He stood looking over her shoulder, occasionally sighing. She knew that her every move was being carefully watched, her calculations closely studied. Her work would inform mission control if the first American satellite would be a success or a crushing failure.
Hours earlier, before the satellite had been launched, her boyfriend had wished her luck. He hadn’t quite gotten used to the fact that his girlfriend worked late nights as an integral part of the American space program. Before leaving, he gave her a quick kiss. “I love you even if the dang thing falls in the ocean,” he said with a smile.
Now, hours later, the worry that the satellite had crashed into the sea was real. They should have detected its signal by now. With each passing second they were inching closer to catastrophic failure. The numbers raced in from tracking stations across the globe. With each new measurement, she calculated the path of the satellite. If it didn’t hit the right velocity, if it didn’t make its trajectory, America would be left with egg on its face, even further behind the Soviets. Her pride was similarly tied to the fate of the satellite. She’d been here at the Jet Propulsion Laboratory from its earliest days, helping to design the rockets powering the tube-shaped spacecraft that was no heavier than a toddler. Now the project’s ultimate fate was hers to reveal.
As she plotted a curved line across the orange graph paper, she realized the trajectory was coming close to the point of no return. If the satellite passed this point, it would leave the atmosphere, begin circling the globe, and become the first American space-success story. The future of space exploration rested on this moment. But the young woman tried not to think of this. Instead, she focused on the paper in front of her, with its long lines of numbers. When she calculated that the satellite had left Earth’s atmosphere, the critical juncture, she kept quiet. She made no comment but couldn’t help letting a smile come to her lips.
“Why are you smiling?” Feynman said, his voice irritated as the moments crept by. Until the signal came through in California, after the satellite had completed a spin around Earth, they couldn’t be sure the satellite would stay up. Everyone was on edge as they waited for the confirmation of a few faint beeps, proof that they’d made it.
The pounding of the Teletype filled her ears. The numbers came in. Suddenly the satellite’s signal came through loud and c
lear, breaking its long silence. She confirmed her calculations before marking down the updated position on the graph paper.
“She made it!” she said triumphantly, twisting around in her seat to see the reaction. Behind her, a room of her colleagues, almost all men, broke into cheers. Ahead of her, the future stretched out, as limitless as space itself.
PART I
1940s
Barby Canright
Macie Roberts
Barbara Lewis (later Paulson)
CHAPTER 1
Up, Up, and Away
The first noise she heard was a low-pitched growl. Next came the explosion. Then the grating sound of metal grinding on metal came as loud as a thunderstorm. Barbara Canright whirled around to see a car-size piece of twisted steel teetering dangerously on the roof of the building above her. With her eyes fixed on the looming accident, the seconds slowed down as she stood frozen in place. Filled with a sudden terror, she hurried away, her heels clicking on the red-brick paths of the California Institute of Technology campus. A blur of faces surrounded her, all gawking at the scene, unsure of exactly what they were witnessing. But Barbara, known by everyone as Barby, knew what the thing falling from the sky was.
From a safe distance she watched as the warped hunks of metal rained down on the sidewalk. One after another, a platform, a rocket motor, and a pendulum fell to their doom. The homemade scientific equipment landed in a heap resembling little more than trash to the onlookers. Yet Barby could value its worth. She gasped when a piece of the building followed the debris to the ground, the bricks breaking apart into powdered clay. When the dust settled, the campus seemed impossibly quiet. As Barby moved away from the scene, the students around her were whispering; it was as if after so much noise, they hesitated to add a decibel.
Barby often had lunch with her husband in the afternoons. She’d escape the shackles of her typewriter and walk across the campus, drinking in the fresh air and the Southern California sunshine. Yet this March day in 1939 was unusually overcast. It was a foreboding beginning to the experiments that a team of men, known as the Suicide Squad, would run that day.
The group drew attention the way a circus attracts a crowd, with outlandish stunts and an eccentric appeal. It all started with three young men: Frank Malina, Jack Parsons, and Ed Forman. Hardly anyone thought of them as scientists. Perhaps this was because only Frank was a student at the university. It was difficult for those first meeting him to guess his age. He had the exuberance of a boy but the thinning hair of middle age. Despite his retreating hairline, he was twenty-six years old, the same age as Ed, and he shared a birthday with Jack, who was just two years younger. Together they tackled rocketry with all the bravado of youth.
Ed and Jack had been best friends since attending Washington Junior High School in Pasadena. Jack was the chemist in the trio. He grew up on the posh “Millionaire’s Mile” in Pasadena with the expectation that, despite his poor performance in school, he would attend college. The Great Depression changed his destiny, leaving his family and his career prospects desolate. Ed, on the other hand, was from humble origins. His background in a working-class Pasadena family gave him experience in cobbling parts together. The machinist of the group, he made the modest equipment they had go a long way. The two bonded over a love of science fiction and rockets. It was this passion that led them to Frank.
For Barby and her husband, Richard, the group held no mystique; they were simply their friends. They met on the Caltech campus, where the Suicide Squad, despite the nonstudent status of two of their members, spent all their free time tinkering with rockets. As they sat around a wicker-and-glass table on the Canrights’ patio, their imaginations fired late into the night with only the moon keeping track of their hours as it rose in the sky. The California moon seemed impossibly big. Barby had never seen one like it back home in Ohio, where in the warmth of the summer nights, everyone hid behind screened porches to shelter from the mosquitoes that descended at twilight.
In the sleepy town of Pasadena, Barby, Richard, and the members of the Suicide Squad had a clear view of the stars from their backyards. Since the Great Depression, the number of businesses was shrinking, down 52 percent in the decade since 1929. One benefit of the sluggish economy was that there was less light pollution in the night sky, leaving a velvety-black canvas for their starry-eyed schemes. As the friends discussed airplanes, Barby found the conversation infectious. She was full of the naïveté of nineteen, and spaceflight seemed an attainable goal to her. They discussed everything, from fuel to fins.
The Suicide Squad men were dreamers, but they were also troublemakers. The previous year, they’d tried to move a cylinder of nitrogen dioxide from outside the chemistry building. The valve suddenly jammed, causing a fountain of toxic, liquefied gas. For weeks, the resulting brown patch of grass on the lawn irritated the university’s gardeners but made Barby smile as she passed it on the way to work. Unfortunately the next experiment wasn’t as funny.
The group were attempting to test an unusual mixture—nitrogen dioxide and wood alcohol—to see how the combination might power a rocket motor. Barby was appalled. Thanks to her proficiency in high school chemistry, she knew how dangerous nitrogen dioxide was. Inhaling the gas can kill you. To mix it with a cheap alcohol and then set it on fire was a death wish. Barby shook her head; the men were certainly earning their reputation.
They took the dangerous mixture and poured it into a small rocket motor. They then attached a fifty-foot rope with the rocket motor swinging off the end and hung the pendulum in a stairwell from the top floor of the Guggenheim Aeronautical Laboratory, all the way to the basement, like a giant rope swing. How hard the pendulum swung translated into how high a rocket might one day fly. But it didn’t go so well. The first time they tried their experiment, the engine misfired and a cloud of toxic gas saturated the building. It caused every metal exterior it touched to rust and tarnished every polished surface. The building housed an expensive new wind tunnel, the largest in the world, and its once-shiny metal was soon covered in spots of orange and brown. It looked like the wind tunnel had a case of measles. The accident earned the men the moniker the Suicide Squad, a nickname that didn’t bode well.
The group worried that their future at Caltech was as ruined as the rusted wind tunnel. Although Ed and Jack were not students, their future in rocketry was inextricably linked to the university. So it was a pleasant surprise when they learned that they could continue their experiments; they just had to move them outside. Using a metal platform attached to the side of the building, they hauled up their rocket-motor pendulum and carefully hung it over the side of the platform. When Barby looked up at the explosion that March afternoon, she was watching the platform carrying all the equipment smash into bits. It could have been worse—Frank could have been killed. At the last minute, he had been called away from the experiment to deliver a typewriter to his adviser’s home, while Ed and Jack carried on alone. Returning to campus, he found a piece of the pressure gauge buried in the wooden beam right where his head would have been.
This accident, in full view of the student body, brought renown to the Suicide Squad, though it wasn’t a desirable notoriety. Barby and Richard teased the group mercilessly. As easy as it was to joke about the accident, Richard was seriously grateful Barby had been nowhere near the platform when it fell.
Richard and Barby loved each other in the passionate fashion of newlyweds, the years not yet smoothing the sharp edges of their union. They fought and made up, the tears and laughter running together. They had eloped, celebrating their tender young marriage by moving from Ohio to Southern California. Richard was twenty-one. Barby was two years younger and turning heads at the all-male Caltech campus. With her dark hair curling at her shoulders, dark brown eyes, and petite, feminine frame, she was the very picture of a wholesome midwestern girl. She had just the kind of job one would expect. She worked as a typist, spending her days clicking away at the keys, while fitting in classes at Occidental College
, in Los Angeles. She was incredibly bright; in high school she took advanced math and chemistry classes, often the only girl in the rigorous courses. As she toiled in school she had no sense that the coursework would ever influence her future. She took the classes simply because she enjoyed them and spoke of mathematics lovingly. Despite her teenage fascination, she was snarled in the limits of being born a woman. None of the options before her—schoolteacher, nurse, secretary—felt quite right. Yet whichever career she chose could hold only a transient charm. Now that she was married, her days of working would last only as long as she and Richard remained childless. Motherhood, the career she was formed for, loomed large.
Richard, like Barby, was also discontented with work. To make ends meet, he drove a truck for a delivery company while attending graduate school at Caltech. Unlike Barby, he could see opportunity on the horizon. He wanted to be an engineer and knew that if he worked hard enough, he could get there. What Barby and Richard didn’t realize was that while they joked around with the Suicide Squad, their fates would end up tied to the wild group. In less than a year, Frank would approach them with a tantalizing job offer.
In 1939, the National Academy of Sciences awarded a grant to the Suicide Squad, now more formally known as the GALCIT (Guggenheim Aeronautical Laboratory at the California Institute of Technology) Rocket Research Project. It came just in time. Without a way to fund their rockets, the group had been on the verge of disbanding. Jack and Ed had taken part-time jobs with the Halifax Powder Company while Frank began research for the Soil Conservation Society. That first award, $1,000, rescued the group, bringing them back together. When they were awarded a second grant the next year for ten times as much, it was life-changing. It was the U.S. government’s first investment in rocket research. In deference to the Army Air Corps, which had proposed the funding, they changed their name to the Air Corps Jet Propulsion Research Project. Their goal was clear: develop a rocket plane. The risky project was the beginning of what would become the Jet Propulsion Laboratory.